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Abstract 

The three-dimensional, Unite volume code ADREA-HF is used to perform a computational 
simulation of the Thomey Island Dense Gas Trial No. 21. In order to avoid excessively fine 
discretisation to model the thin circular fence and still take into account the real shape and 
dimensions of the fence, a special technique is adopted: the computational cells which are in 
contact with the fence are characterised as “blocked” or “partially blocked”. In the blocked 
cells, the flow is completely obstructed, while in the partially blocked cells, a flow resistance 
coefficient is evaluated. The above technique, in conjunction with a one-equation turbulence 
closure model gives rather satisfactory results in comparison with the experimental data in the 
form of concentration-time histories. The model has a tendency to underestimate the maximum 
gas concentration and the dose (integral of the concentration with time). The differences 
between model predictions and experimental data can be reduced by taking into account 
concentration fluctuations and possible improvements of the turbulence modelling. 

1. Intruductioa 

The code ADREA-HF [ 1,2J was developed to compute the dispersion of denser- 
than-air vapour clouds with the aim of application to terrain of any complexity. It 
has already been applied in cases of dispersion over flat terrain [3-S] and this paper 
presents the first validation for the prediction of dispersion in the presence of 
obstacles. The code assumes a mixture of two fluids: the dense gas and the ambient air. 
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It solves the conservation equations for the mixture total mass, momentum, energy 
and the mass fraction of the dense gas. A heat conduction equation for the layer 
adjacent to a solid boundary surface is also included. These equations are discretised, 
in the domain of interest, using a finite volume methodology, while several turbulence 
closure schemes are available in the code. For the computations presented in this 
paper, a one-equation turbulence model is utilised, since it was found adequate to 
describe the effects of an obstacle on the dispersion of a dense cloud. 

The Thorney Island Heavy Gas Dispersion Trials (HGDT) were organised by the 
Health and Safety Executive (HSE, UK) in the framework of a research programme 
on the atmospheric dispersion of denser-than-air gases. Detailed information about 
the trials programme is given by McQuaid and Roebuck C6-j. The primary objective of 
the trials was the acquisition of reliable data at large scale, in order to test the validity 
of mathematical and wind tunnel models for dense gas dispersion. The experiments of 
Phase II (10 trials) refer to the dispersion of fixed volume, isothermal clouds, in the 
presence of several different kinds of obstructions (impermeable fence, permeable 
screens and a rectangular building) under a variety of atmospheric conditions. 

For the validation of the code ADREA-HF in the prediction of dispersion over 
obstacles, experiment no. 21 of the Phase II Thorney Island trials has been chosen for 
simulation. In this trial a semi-circular impermeable fence was placed around the gas 
source. The latter was a cylindrical container, the lateral sides of which were made of 
flexible plastic material. The container, filled with a mixture of Freon-12 and nitrogen, 
was placed at the centre of the semi-circular fence and at time 0.0 it collapsed rapidly 
to the ground, leaving a gas cylinder standing instantly still. In this respect, an 
instantaneous release was simulated. Trial 21 was chosen for simulation because, 
according to McQuaid and Roebuck [a, the release was fully successful and the 
interaction of the gas cloud with the fence was strong due to the relatively low wind 
speed. 

During the experiment, gas sensors were placed on vertical masts to measure the 
dense gas concentration at several distances from the source and at several heights 
from the ground (0.4,2.4,4.4,6.4 m). Other meteorological instruments, such as ther- 
mometers, cup- and sonic-anemometers, solarimeters, relative humidity sensors, wind 
vanes, smoke detectors and ultra-sonic gas sensors, were also placed on the masts, in 
order to measure the atmospheric conditions as well as turbulence characteristics 
during the dispersion of the cloud. Detailed information about the instrumentation of 
the trial can be found in the final report of the Trials Project [6]. 

2. Description of the mathematical formulation 

2.1. The transport equations and the turbuience closure scheme 

For the case of the Thorney Island Trial 21, the conservation equations of the total 
mass, momentum and mass of dense gas were solved by ADREA-HF, in the form 
presented in the appendix (Eqs. (A.l)-(A.3)), in a Cartesian coordinate system. 
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In the conservation equations the eddy viscosity+lifI’usivity approach is adopted to 
evaluate the turbulent fluxes, according to [l, 23 (see Eqs. (AS)). For the computations 
described in this paper, the one-equation turbulence model described in detail in [2] 
(presented also in brief in Section 7.2) was used, with certain modifications which 
allow for: 
(1) the application of the above turbulence model in the atmospheric surface layer 

(below 35 m), where the dispersion problem under consideration takes place, 
(2) the modelling of the effect of thin, non-rectangular obstacles (such as the fence in 

Thorney Island Trial 21), without resorting to fine discretisation and 
(3) the flow stability conditions which occur during dense gas dispersion and which 

are much stronger than those usually observed in the atmosphere [7]. 
The above modifications will be described in the following sections. 

2.2. The turbulent momentum d@sion coeficients 

In addition to the three components of the eddy viscosity K,i (i = X, y, z) along the 
three coordinate directions, as defined in [l] (see also Eq. (A.@), an eddy viscosity 
K,, along the direction A (where R is the unit vector normal to a surface of arbitrary 
orientation) is calculated as follows: 

K,, = C, k’j2 1, (1) 
where k is the turbulent kinetic energy, Z, is an effective length scale and C, ( = 0.1887) 
is an empirical constant. 

The turbulent kinetic energy k is computed by solving the transport equation, as 
given in [l] (see also Eqs. (A.7)-(A.11)). 

Following the arguments presented in [2], the effective length scale Z,, to be used in 
Eq. (l), is calculated from 

~=[(~+~J+(g’~“, r=5 (24 

where I#,, is the wall length scale, equal to the shortest distance of the particular point 
from a solid boundary in the R-direction, Z, is a stability length scale in the A-direction 
and Z0 is an “outer” length scale (see also Eq. (A.13)). These length scales are given by 
the relations: 

(2b) 
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where N, is the Brunt-VtisW frequency in the A-direction and (aP/dxi), is the 
asymptotic pressure gradient. The above model is based on the assumption that 
turbulence length scales mainly depend on the presence of solid boundary surfaces, 
local stability conditions and the global pressure acceleration field (r). It should be 
noted that the outer length scale has little influence, as long as the cloud remains close 
to the ground. 

Following the reasoning presented in [l] (see also Eq. (A-14)), the Brunt-Viiisil5 
frequency N, in Eq. (2b) is defined as 

As seen from Eqs, (2a)-(2c), the effective length scale in the horizontal direction is not 
affected by buoyancy since gn = 0 in this direction. Thus, the horizontal length scale is 
mainly a function of the horizontal distance from the particular point to the nearest 
solid boundary surface. If this distance is very large, then so is the horizontal length 
scale. Thus, for points located far from solid boundaries in the horizontal direction, 
the horizontal diffusivities tend to assume large values and the model predicts a too 
large dilution rate of the dense gas cloud, leading to under-prediction of the gas 
concentration. This deficiency was due to the fact that the original turbulence model 
was designed for use in the atmospheric Ekman layer and not in the surface layer 
where dispersion of dense gas occurs. It was faced by considering that the turbulent 
diffusivities in any direction for a particular point do not exceed a factorftimes the 
smallest turbulent diffusivity for that point. This modification was adopted following 
Lantz et al. [S] who suggest that the ratio of the horizontal to the vertical turbulent 
diffusivities is a function of the stability of the ambient atmospheric flow expressed by 
the different Pasquill categories. Thus, for the present case, the following expressions 
are used: 

K m,min E mWKmi(i=,,,.j, Kd IW 

K ml, max = fKm, min W) 

Preliminary calculations have shown that the results of the simulation are sensitive to 
the choice of the value off: Lantz et al. [S] propose a value of 6 for the ratio of the 
horizontal to the vertical turbulent diffusivities for neutral atmospheric conditions, 
which was the case for Trial 21. In this respect f = 6.0 is adopted for Eq. (4) for this 
specific case. 

2.3. The turbulent Pram&l number 

The turbulent Prandtl number bh depends mainly on the flow stability and is used 
to calculate the turbulent mass diffusivity from the turbulent momentum diffusivity 
(K,i = &/a,). For unstable conditions, the relation for ah defined in [l] is adopted 
here (see Eq. (A.15)). For the stable case (Ri 3 0), a fixed value of 0.72 is proposed in 
[1] for oh. The experimental data, on which this constant bh value is based, do not 
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extend over the strong stability conditions encountered during the dispersion of dense 
gases. It is worth noting that the calculations performed with crL = 0.72 for Ri 2 0 
resulted in high turbulent mass diffusivities and small dense gas concentrations. 
Furthermore, laboratory experiments conducted by Ellison and Turner [9] as well as 
atmospheric measurements under extreme stability conditions conducted by Kondo 
et al. [lo], demonstrated that the turbulent Prandtl number increases with increasing 
stability. These experiments were performed with Richardson numbers from 0.0 to 
about 10.0, i.e. a range representative of the conditions during dense gas dispersion 
(Schreurs and Mewis [7]). 

In the light of the above, the following relation, proposed by Ellison and Turner [9] 
to model the behaviour of the turbulent Prandtl number in stably stratified flows, is 
adopted here: 

bh = Pr 
(1 - Ri# 

1 - Rif/RifC 
for Ri 2 0 (5) 

Here Pr is the classical Prandtl number, Pr = pc,/A = 0.71, and Rift is the critical flux 
Richardson number, for which a value of 0.15 is assumed [9). The physical meaning of 
the Q~ increase with increasing stability predicted by Eq. (5) is that in extremely stable 
stratifications the turbulent mass diffusivity tends to zero while the turbulent mo- 
mentum diffusivity does not, since momentum can also be transferred by other means, 
as for example internal waves. 

The validity of Eq. (5) is widely accepted and this equation has also been used by 
other modellers for dense gas dispersion [7,11]. 

2.4. The numerical approach 

Details on the numerical treatment of the transport equations solved by ADREA- 
HF are given in Cl]_ Here only the outline of the numerical procedure will be 
presented. 

For the discretisation of the differential conservation equations, ADREA-HF uses 
a “control volume” formulation. The computational domain is divided into a number 
of non-overlapping finite control volumes (rectangular cells), over which the differen- 
tial equations are integrated. For the control volumes of the velocity components, the 
“staggered grid” methodology is utilised. 

For the time derivative, a first order, backward difference scheme is applied (fully 
implicit in time). In the convection terms the “upwind differencing” scheme is adopted, 
while in the diffusion terms “central differencing” is applied. 

A discretised Poisson pressure equation is formed from the integrated mass conser- 
vation equation. The ap/at term in the continuity equation is substituted by the 
equivalent a(tP)/CM, where c = p/P is calculated from the fluid mixture equation of 
state. This modification improves the convergence, especially for cases where buoy- 
ancy forces are significant. The final pressure Poisson equation is formed using the 
discretisation equations for the velocity components. 
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Fig. 1. Horizontal plan of computational domain, indicating the initial position of the gas cloud, the fence 
and the sensor positions. 

2.5. The computational domain for Thorney Island Trial 21 

Owing to the limitations in computer time and storage, it is assumed that the 
dispersion of the cloud is symmetrical about the wind direction. Therefore, the 
computational domain considered represents half of the real space affected by the 
released gas. This assumption is not far from reality, since the mean wind direction 
during experiment 21 deviated only by 6.1” from the plane of symmetry of the 
semi-circular fence. The experimental data (concentration versus time) for sensors 
located in symmetric positions with respect to the plane of symmetry are also very 
similar, which supports the assumption of symmetry in the dispersion. The only 
sensors for which this symmetry assumption is not valid are those found at the edges 
of the cloud during the dispersion. 

The computational domain has the form of a rectangular box with the x-axis 
coinciding with the mean wind direction, the z-axis vertical to the ground and the 
y-axis perpendicular to the mean wind direction. The first (J = 1) xz-plane crosses the 
cylindrical source at the middle, i.e. it is the plane of symmetry. Fig. 1 is a horizontal 
plane of the domain, where the gas source, the fence and the sensor positions 
(numbered) are indicated. 

The dimensions of the computational domain chosen are the following: 
l x-axis (downwind), xIoI = 463 m; 
l y-axis (crosswind), ytoc = 102 m; 
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100 150 
X-Axis (Downwind), DX_min=2.3m, DX_mox=25m 

Fig. 2. Part of the horizontal (xy) grid, with the gas source and the fence indicated. 

z-axis (height), ztbt = 36.5 m. 
The dimensions of the fence are 
radius, 50 m; 
height, 5 m. 
The dimensions of the initial cylindrical gas cloud (source) are 
diameter, 14 m; 
height, 13 m. 
The source centre (which coincides with the centre of the fence) was positioned 

approximately 100 m downwind of the inlet boundary surface. 
The domain is discretised with a rectangular grid of 

52 (x-axis) x 23 (y-axis) x 23 (z-axis) = 27508 cells. 

The grid is not uniform since it is denser close to the source, between the source and 
the fence and close to the ground. The smallest cell is 2.3 m long in the X- and 
y-directions and OS m in the z-direction. For reasons of clarity a part of the horizontal 
xy-grid Gvith the position of the gas source and the fence is shown in Fig. 2. 

3. Treatment of the semi-circular fence 

As already mentioned, ADREA-HF is a finite volume code that uses a Cartesian 
coordinate system with rectangular cells. The fence used in Trial 21 of the Thorney 
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Island HGDT was semi-circular and very thin in comparison to the dimensions of the 
trial site and to the dimensions of our computational domain (see Fig. 1). This has two 
consequences. 
(1) It is inevitable that, during the discretization of the domain, some cells are crossed 

by the fence (see Fig. 2). 
(2) The horizontal discretisation close to the fence should be very fine to take into 

account correctly the very thin fence. 
Some possible approximations of the fence of Trial 2 1 would be a fence consisting of 

straight parts following the cell interfaces, or a thick fence occupying the volume of 
a few cells. In these cases, however, a fine discretisation would again be necessary in 
order to approach the real dimensions of the fence (length, width and area). 

The main interest of this study lies with the modelling of the overall effect of the 
actual semi-circular, thin fence on the flow field and the gas dispersion, while at the 
same time using a horizontal discretisation as coarse as possible (for reasons of 
economy in computer memory and execution time). In this respect, the following 
technique was adopted. 
(1) The fence is considered to be infinitely thin, in the sense that it does not 

occupy any volume of the computational cells that it crosses. The fence consists 
only of two vertical solid boundary surfaces, each one facing the opposite direction 
to the other. The area of each of these surfaces equals the real area of the fence of 
Trial 21. 

(2) The computational cells that are crossed by the fence were split into the following 
two categories: 
(a) BZocked ceZEs in the X- or y- or both directions_ If the centre of the cell was 

obstructed by the fence in the x- or y- direction, i.e. if in the particular cell that 
is crossed by the fence we draw a straight line passing from the cell’s centre and 
parallel to the x- or y-axis and this line meets the fence inside this cell, then this 
cell is blocked in the X- or y-direction. 

(b) PartiaZEy blocked cells in the x- or y- or both directions, if the cell is crossed by 
the fence but is not blocked. 

(3) In the blocked cells, no fluid should be passing between the two parts of the cell 
that are separated by the fence. Thus, at the middle-plane of these cells both 
horizontal convection and horizontal diffusion were put to zero in the transport 
equations for the total mass, momentum and dense gas mass (in the x-direction if 
the cell is x-blocked, in the y-direction if the cell is y-blocked or in both directions 
if it is blocked in both). The justification for this choice is that the middle plane of 
the cells coincides with the interface of the flow field cells, since the staggered grid 
methodology is adopted for the latter. 

(4) For the partially blocked cells, the fence should not completely obstruct the flow, 
but act as a resistance to the flow. Thus, the part of the fence that belongs to 
a partially blocked cell was projected at the cell’s middle planes (in the x- and y- 
directions). Then a flow resistance coeficient in the x- and y- directions was 
calculated as a function of the projection of the fence on the cell’s middle planes. 
This resistance coefficient was calculated after the following empirical equation, 
proposed by Idelchik [12], for the case of a flow through a sharp-edged orifice in 
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a straight tube 

where AP is the pressure drop, p is the fluid density, u is the undisturbed velocity of 
the flow, Ai,i is the undisturbed flow area in the i-direction (the cell’s total vertical 
cross-section in our case) and Ao,i (Ao,i -c Al,:) is the restricted flow area in the 
i-direction (the vertical cross-section of the cell left free if the fence projection 
is subtracted from the total cross-section). Eq. (6) was the most appropriate 
formula found in the literature that could be applied to the present case. The 
resistance coefficient increases abruptly as Ao,i is decreased, so the transition from 
a partially blocked to a blocked cell is continuous. The implementation of the 
resistance coefficient [i can be seen in the momentum equation shown in the 
Appendix. 

Following the above-described approach we have one x-blocked cell in each 
horizontal line of cells parallel to the x-axis and one y-blocked cell in each horizontal 
line of cells parallel to the y-axis. 

It should be noted that blocked and partially blocked cells have different qualitative 
behaviour, since in the latter fluid can pass from one part of the cell to the other. 

The above method is not expected to reproduce the details of the flow very close to 
the obstacle. The justification of its use lies in how well it reproduces the global effect 
of the fence, which is the main point of interest. 

4. Simulation of Thorney Island Trial No. 21 

4.1. Input data relative to the experiment 

The gas used in all the Thorney Island trials was a mixture of Freon-12 (CCl,F,) 
and nitrogen (N,). The characteristics of the gas for Trial no. 21 were the following 
l initial relative density (to air), pr = 2.02 ( +4%); 
l released volume, 2050 m3 ( + 5%); 
l isothermal (ambient temperature). 

The atmospheric stability conditions were assessed to be neutral. The average wind 
velocity at 10 m height was 3.9 m/s ( f 0.1 m/s) and the ambient air temperature was 
20.9 “C ( f 0.2 “C). 

4.2. Calculation of the wind velocity profile 

The first computational step was to calculate the undisturbed wind velocity profile 
for the particular trial. This was done by solving the momentum conservation 
equation in one dimension, i.e. only diffusion along the z-direction. A pressure 
gradient dP/dx = - 1.4 x 10m3 Pa/m was also adopted as the driving force of the 
flow, in order to have at 10 m height a wind speed of 3.9 m/s, which is the given 
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Fig. 3. (p ) Calculated and (---) experimental undisturbed wind velocity profiles. 

experimental value. The calculated and the experimentally obtained wind velocity 
profiles are shown in Fig. 3. 

4.3. Calculation of the steady-state wind field 

The second step was the computation of the steady-state wind field, formed around 
the solid cylindrical gas container and around the semi-circular fence, prior to the gas 
release, This step was achieved using as input the already obtained wind profile and 
solving the total mass and momentum conservation equations, in three-dimensional 
form, until a steady state was reached. A plot of the calculated velocity vector field on 
the vertical xz-plane (J = 1, i.e, the plane of symmetry) is given in Fig. 4. The 
calculated velocity vector field on the horizontal xy-plane (K = 1, i.e. the ground 
plane) is shown in Fig. 5. This step was performed because the wind field in which the 
cloud is released affects its advection as well as its dilution rate. Furthermore, the 
dynamical pressure distribution around the cylindrical container is important for the 
initial phases of the dilution of the cloud. 

4.4. Transient calculation of the cloud dispersion 

Using the velocity, pressure and turbulent kinetic energy distributions from the 
previous step as initial conditions, the transient calculation of the gas dispersion was 
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Fig. 6. Contour plot of dense gas mass fraction at the vertical (symmetry) plane at time 30 s after the release. 
(-) 0.001; (---) 0.010; (---) 0.050; (-----) 0.100; I-----) 0,150. 
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Fig. 7. Contour plot of dense gas mass fraction at the horizontal (ground) plane at time 30 s after the 
release. (-) 0.001; (- - -) 0.100, (---) 0.150; (--- --) 0.200. 
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performed as the final stage. In this step the three conservation equations for the total 
mass, momentum and dense gas mass were solved. The computations started at 0.0 s, 
with a still, dense gas column standing in the place of the container and continued 
until 500.0 s, when the cloud centre had drifted out of the domain. 

Fig. 6 shows the contour plot of the calculated gas mass fraction at the 30th second 
after the release for the vertical plane of symmetry and Fig. 7 shows the corresponding 
plot for the horizontal plane at the ground. 

Fig. 8(a) shows the calculated velocity field at 10 s after the release, when the cloud 
has not yet reached the fence, for the horizontal plane at the ground. Fig. 8(b) is the 
corresponding velocity field at 50 s after the release. 

4.5. Comparison wit/r the experimental data 

For comparison purposes, the computed concentration values at all grid points of 
the computational domain were interpolated to determine the corresponding values 
at the positions of the sensors. The calculated and the measured concentration-time 
histories were plotted together and compared (see Figs. 9-13) The comparison 
concerns the shape of the curves, the maximum concentration and the cloud arrival 
and departure times. Two positions inside the fence (Figs. 9(a) and (b) and lo(a)-(c)) 
and three positions outside the fence (Figs. 11(a) and (b), 12(a) and (b) and 13(a) and 
(b)) are included. Except for Fig. lo(c), comparisons for elevations greater than 2.4 m 
have not been included, since the experimental data at those heights present signifi- 
cant fluctuations and it is therefore diflkult to draw any conclusions. 

5. Discussion and conclusions 

The first point that is worth noting is the good agreement between the wind velocity 
profiles, shown in Fig. 3. It indicates that the adopted turbulence model performs well 
also in the absence of a dense gas, for neutral ambient conditions. The correct 
computation of the wind velocity is also important for the correct prediction of the 
advection speed of the gas cloud. 

The vector plots in Figs. 4 and 5 give a qualitative picture of the predicted 
steady-state wind velocity field, before the release of the gas. The calculated flow 
patterns around the cylindrical container and the fence are quite reasonable and 
characteristic recirculation zones are predicted in the wake of these bodies. 

The contour plots of the gas mass fraction (Figs. 6 and 7) show that the adopted 
modelling approach for the fence reproduces most of the real effects of the obstacle on 
the dispersion of the cloud, as described in [6J. From the horizontal contour plot 
(Fig. 7), it is apparent that the cloud has been held up in the fenced area: higher 
concentrations exist upwind of the fence than downwind, where the dilution of the 
cloud is much faster. The vertical contour plot (Fig. 6) shows that the cloud front 
“splashes” over the fence and is raised up to three times the height of the fence. These 
phenomena were also reported during the experimental campaign. 
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Fig, 9. Concentration versus time for sensor No. 3 (see Fig. l), for heights: (a) 0.4 m and (b) 2.4 m. 
(-) Experiment; (---) ADREA-HF. 
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Fig. 10. Concentration versus time for sensor No. 4 (see Fig. I), for heights: (a) 0.4 m and (b) 2.4 m and 
(c) 4.4 m. (-) Experiment; (---) ADREA-HF. 
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Fig. 10. (continued) 
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The interaction between the cloud and the obstacle is also seen in the velocity 
vector plots in the horizontal plane at the ground (see Figs. 8(a) and (b)). The cloud 
spreads radially (Fig. 8(a)), until it reaches the fence on which it is “reflected” and then 
it starts moving backwards (Fig. 8(b)). 

This motion of the cloud, due to the obstacle, is also demonstrated by Figs. 9(a) and 
(b) and lO(aj(c), which present characteristic cases of the concentration-time histories 
for positions inside the fence (refer to Fig. 1 for the numbering of the sensors). In these 
curves, two concentration peaks are observed. The second peak is due to the return 
flow following the cloud splashing on the fence. The calculated curves follow the same 
pattern and predict quite satisfactorily the cloud arrival and departure times. 

Figs. 11(a) and (b), 12(a) and (b) and 13(a) and (b) refer to positions outside the fence. 
Therefore, there is only one concentration peak and the level of the concentration is 
much lower than inside the fence. Here again, the model predictions are quite 
satisfactory. The overall shape and the timing (arrival and departure times) of the 
calculated curves agree well with the experimental ones. 

In conclusion, the combination of the flow resistance coefficient with the blocked 
cells gives the expected flow patterns around the obstacle. From the above presented 
comparison between the experimental and the calculated curves of concentration 
versus time, we also conclude that the present modelling approach predicts rather 
successfully the overall effects of the obstacle on dense gas dispersion. 

Nevertheless, the model has a tendency to underestimate the dense gas 
maximum concentration. This is clearly shown in Fig. 14 where the calculated peak 
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Fig. 11. Concentration versus time for sensor No. 9 (see Fig. l), for heights: (a) 0.4 m and (b) 2.4 m. 
(-) Experiment; (---) ADREA-HF. 
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Fig 13. Concentration versus time for sensor No. 15 (see Fig. l), for heights: (a) 0.4m and (b) 2.4 m. 
(-) Experiment; (-- -) ADREA-HF. 
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l.,l,I I , 
10.0 1 .o 

Calculated Maximum Concentration (X Volume) 

Fig. 14. Experimental versus calculated maximum concentrations (the axes are scaled in descending order). 
(-) Calc./exper. = 1; (- - -) calc./exper. = 2 or l/2; (---) calc./exper. = 5 or l/5. 

concentrations are compared with, the experimental ones. This figure was drawn, 
following the recommendations of Ermak and Merry [13] (note that the axes are 
scaled in descending order). In drawing Fig. 14 we did not take into account the 
sensors with numbers 8, 10, 12,14,16 (see Fig. l), because of the assumption of 
symmetrical dispersion which is not valid for these sensors (as already mentioned and 
as seen from the experimental data). In fact the corresponding sensors at the symmet- 
rically opposite positions (with respect to the x-axis of our domain) did not detect gas 
during the experiment. This is due to the fact that the mean wind direction during the 
experiment did not coincide with the centre line of the trial site but was 6.1” off to 
the left. 

In Fig. 14 we observe that nearly all the points are located lower than the 
“calculated = experimental” line and around the “calculated/experimental = l/2” 
line. Thus, on average, the predicted maximum concentration will be half of the 
experimentally observed value. This is partly explained by the fact that a model like 
the one used here calculates average values of concentration and in this respect it 
cannot predict the high peaks of short duration which were observed during the 
experiment. 

A better basis of comparison is therefore to calculate the doses (defined as integral 
of the concentration with time for the duration of the calculation, i.e. 500 s). Fig. 15 
presents the comparison between experimental and predicted doses for the same 
sensor positions as in Fig. 14. Here again it is clear that the model tends to 
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Fig. 15. Experimental versus calculated doses (the axes are scaled in descending order). (-) Calc/ 
expfzr. = 1; (- - -) calc./exper. = 2 or l/2; (---) caIc./exper. = 5 or l/5. 

underestimate the dose but to a-lesser extent than the maximum concentration, since 
now more points are close to the “calculated = experimental” line. 

The main conclusion that can be drawn from the above is that the adopted model 
has the tendency to underestimate the concentration of the dense gas. A possible cause 
for this is the turbulence modelling, which might underestimate the damping effect of 
the strongly stable density stratification upon the eddy mass diffusivity, i.e. upon the 
mixing of the gas with the ambient air. 

On the other hand, our model predicts only average values of concentration, while 
the experimental data strongly fluctuate. Thus, it is necessary to include in the model 
the calculation of concentration fluctuations in addition to the concentration mean 
values. In this way, we could evaluate the confidence intervals for the model predic- 
tions and judge whether the model actually underestimates the concentration, or ifit 
is just the statistical nature of the experimental data that causes these differences 
between the calculated and the measured data. 

6. Nomenclature 

CP specific heat under constant pressure (J/kg K) 
C” specific heat under constant volume (J/kg K) 
CD, CN turbulence model constants (dimensionless) 
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turbulence model constants (dimensionless) 
gravity acceleration component in the R-direction (m/s2) 
cell number along the x-direction (dimensionless) 
cell number along the y-direction (dimensionless) 
turbulent kinetic energy (per unit mass) (mz/s2) 
cell number along the z-direction (dimensionless) 
turbulent momentum diffusivity in the i-direction (i = x, y, z) (m2/s) 
turbulent momentum diffusivity in the A-direction (m’/s) 
turbulent mass diffusivity in the i-direction (i = x, y, z) (m2/s) 
wall length scale of turbulence in the R-direction (m) 
effective length scale of turbulence in the A-direction (m) 
stability length scale of turbulence in the A-direction (m) 
global pressure field length scale of turbulence (m) 
unit vector normal to a surface of arbitrary orientation (dimensionless) 
Brunt-VtisSi frequency in the A-direction (s- ‘) 
pressure (N/m’) 
gradient Richardson number (dimensionless) 
flux Richardson number (dimensionless) 
critical flux Richardson number (dimensionless) 
time (s) 
distance along x-axis (downwind) (m) 
dimension of computational domain in the w-direction (m) 
distance along the y-axis (crosswind) (m) 
dimension of computational domain in the y-direction (m) 
distance along the z-axis (height) (m) 
dimension of computational domain in the z-direction (m) 
asymptotic pressure field acceleration (m/s’) 
flow resistance coefficient (dimensionless) 
molecular conductivity (J/m s K) 
molecular viscosity (kg/m s) 
density (kg/m s) 
turbulent Prandtl number (dimensionless) 

7. Appendix 

7.1. The transport equations 

The set of conservation equations solved by ADREA-HF, for the simulation of 
Thorney Island Trial 21 (single phase, isothermal case) is the following: 

Total mass 
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Momentum 

Mass of dense gas 

&o) + &@*co) = -& Kmiao 

i i(‘,,) 

(A-2) 

64.3) 

where p is the mixture (air-dense gas) density, Ui is the velocity in the i-direction 
(i = X, y, z), P is the pressure, K mi is the eddy viscosity in the i-direction, gi is the 
gravity acceleration in the i-direction, Zi is the distributed resistance of the flow in the 
i-direction, o is the dense gas mass fraction and bh is the turbulent Prandtl number. 
The resistance is given by 

Ti PIUil”i 
Zi=-_sX (A.4) 

i 

where & is the resistance coefficient, given by Eq. (6) and 6Xi is the horizontal grid 
resolution, both in the i-direction. 

In the above equations the eddy viscosity-diffusivity approach is adopted to model 
the turbulent fluxes: 

, 
aui 

- l&U> = Kmj- 
3Xj 

(A.5a) 

- K,i &II - u@’ = - - 
flh axi 

7.2. The turbulent momentum d@k.sion coe#cients 

The eddy viscosity K,i is calculated as follows [l, 23 

(ASb) 

(A-6) 
where k is the turbulent kinetic energy, Ii is the effective length scale in the i-direction 
and C, ( = 0.1887) is an empirical constant. 

The turbulent kinetic energy is computed by solving the following transport 
equation: 

(A.7) 

Here bk = 1.0 is a constant, G and GB are the mechanical and the buoyancy produc- 
tion (or dissipation) terms, respectively, 

G= 
yaui - - PUiuj&9 Gg = prUigi (A. 8) 
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and E is the viscous dissipation rate, modelled as 

k3/2 
E=CD--- 

1, ’ 

CD = 0.3 (A-9) 

where I, = min(l,, Z,,, I,). The ratio of the buoyancy production (or dissipation) rate to 
the mechanical production rate is defined as the flux Richardson number Rir; the 
latter is equal to the gradient Richardson number Ri divided by the turbulent Prandtl 
number ah: 

GB Ri 

Rif= -z=- oh 

Thus, Eq. (A.7) is written as follows: 

The gradient Richardson number is defined, according to [l] as 

The effective length scale Ii, to be used in Eq. (A@, is calculated from 

(A. 10) 

(A.ll) 

(AJ2) 

(A.13) 

where Z,i is a wall length scale, equal to the shortest distance of the particular point 
from a solid boundary in the i-direction, lsi is a stability length scale in the i-direction 
and I0 is an “outer” length scale, given by the relations 

kl/2 
lsi = CN N_ 

‘ 

C N = 0.51, cr = 0.49 

where Ni is the Brunt-ViiissZlti frequency in the i-direction. The above model is based 
on the assumption that turbulence length scales mainly depend on the presence of 
ground, local stability conditions and the global pressure acceleration field (I’). 

According to [l], the Brunt-WissSilli frequency Ni is defined as 

Ni= gi _-_% [( 1 aP 

)I 

l/2 

P axi cp Pgi (A.14) 
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The eddy mass diffusivity, as can be seen in Eqs. (A.3) and (ASb) is related to the eddy 
viscosity via the turbulence Prandtl number c##, which depends mainly on the flow 
stability. According to [1], for unstable flows, crh is given by 

(A.15) 

while, for stable flows, as inside a dense gas cloud, ah is given by Eq. (5). Here Pr is the 
classical Prandtl number Pr = JJC,/L = 0.71 and Rirc is the critical flux Richardson 
number, for which a value of 0.15 is assumed [9], 
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